BUCK Epigenetics in Human Adult Stem Cell Aging

Victoria Lunyak, PhD Buck Institute for Research on Aging

BUCK Human Body is in a State of Constant Flux

50-70 million cells are discarded and new ones are generated **daily**

Correction of Aging Pathologies with Rejuvenated Adult Stem Cells

LIFE SPAN

self-renewal, differentiation

correction

turnover

Senescence of Adult Stem Cells

Oxidative Stress

Accumulation of DNA Damage

Shortened Telomeres

Loss of Epigenetic Regulation

Altered Signaling Within Niche

Are these changes reversible?

protein coding RNA

Isolation and Maintenance of Human Adipose Tissue Derived Stem Cells (ADSC)

Isolation and Maintenance of Human Adipose Tissue Derived Stem Cells (ADSC)

BUCK Adipose Tissue Derived Stem Cells (ADSCs) are Important Regulators of Metabolic, Immunomodulatory,Inflamatory and Angiogenic Pathways

1264 publications from 2006-2011 based on Pubmed

NATURE | ARTICLE

previous article next article

CRTC3 links catecholamine signalling to energy balance

Youngsup Song, Judith Altarejos, Mark O. Goodarzi, Hiroshi Inoue, Xiuqing Guo, Rebecca Berdeaux, Jeong-Ho Kim, Jason Goode, Motoyuki Igata, Jose C. Paz, Meghan F. Hogan, Pankaj K. Singh, Naomi Goebel, Lili Vera, Nina Miller, Jinrui Cui, Michelle R. Jones, CHARGE Consortium, GIANT Consortium, Yii-Der I. Chen, Kent D. Taylor, Willa A. Hsueh, Jerome I. Rotter & Marc Montminy

Nat Protoc. 2011 March ; 6(3): 346-358. doi:10.1038/nprot.2010.199.

Feeder-independent iPS cell derivation from human and mouse adipose stem cells

Shigeki Sugii^{1,2,4}, Yasuyuki Kida^{2,4}, W. Travis Berggren³, and Ronald M. Evans^{1,2} ¹Howard Hughes Medical Institute, La Jolla CA 92037, USA

²Gene Expression Laboratory, La Jolla CA 92037, USA

³Stem Cell Core, The Salk Institute for Biological Studies, La Jolla CA 92037, USA

Experimental Cell Research Volume 314, Issue 3, 1 February 2008, Pages 603-615

Daniele Peroni^a, Ilaria Scambi^a, Annalisa Pasini^b, Veronica Lisi^b, Francesco Bifari^b, Mauro Krampera^b, Gino Rigotti^e, Andrea Sbarbati^a and Mirco Galiè^a, [▲], [∞]

Review

Nature Reviews Endocrinology 6, 195-213 (April 2010) | doi:10.1038/nrendo.2010.20

Transplantation of adipose tissue and stem cells: role in metabolism and disease

Thien T. Tran & C. Ronald Kahn About the authors

Concise Review: Adipose-Derived Stromal Cells for Skeletal Regenerative Medicine¹¹⁵ Benjamin Lev¹ Michael T Longaker^{1,2,1} Issue

Benjamin Levi¹, Michael T. Longaker^{1,2,*,¶} Article first published online: 5 APR 2011 DOI: 10.1002/stem.612 Copyright © 2011 AlphaMed Press

STEM CELLS

Volume 29, Issue 4, pages

576-582, April 2011

OPEN a ACCESS Freely available online

PLos one

Adipose-Derived Stem Cells Stimulate Regeneration of Peripheral Nerves: BDNF Secreted by These Cells Promotes Nerve Healing and Axon Growth *De Novo*

Tatiana Lopatina¹*, Natalia Kalinina¹, Maxim Karagyaur¹, Dmitry Stambolsky¹, Kseniya Rubina¹, Alexander Revischin², Galina Pavlova², Yelena Parfyonova¹, Vsevolod Tkachuk¹

Human Adipose Tissue Is a Source of Multipotent Stem Cells

Patricia A. Zuk, [†] Min Zhu, * Peter Ashijan, * Daniel A. De Ugarte, * Jerry I. Huang, * Hiroshi Mizuno, * Zeni C. Alfonso, [‡] John K. Fraser, [‡] Prosper Benhaim, * and Marc H. Hedrick *

*Departments of Surgery and Orthopedics, Regenerative Bioengineering and Repair Laboratory, UCLA School of Medicine, Los Angeles, California 90095; and [‡]Department of Medicine and the Jonsson Comprehen Angeles, California 90095

Submitted February 25, 2002; Revised June 21, 2002; Accepted August 23, 2002 Monitoring Editor: Martin Raff

OPEN a ACCESS Freely available online

PLos one

Genome-Wide Profiling of MicroRNAs in Adipose Mesenchymal Stem Cell Differentiation and Mouse Models of Obesity

Lena Bengestrate¹⁴, Sam Virtue², Mark Campbell², Antonio Vidal-Puig², Dirk Hadaschik¹, Peter Hahn¹, Wolfgang Bielke¹*

Nature Cell Biology 7, 601 - 611 (2005) Published online: 15 May 2005 | doi:10.1038/ncb1259

Prediction of preadipocyte differentiation by gene expression reveals role of insulin receptor substrates and necdin

Yu-Hua Tseng^{1,5}, Atul J. Butte^{2,4,5}, Efi Kokkotou¹, Vijay K. Yechoor¹, Cullen M. Taniguchi¹, Kristina M. Kriauciunas¹, Aaron M. Cypess¹, Michio Niinobe³, Kazuaki Yoshikawa³, Mary Elizabeth Patti¹ & C. Ronald Kahn¹

BUCK Clinical Trials With Human Adipose Tissue Derived Stem Cells (ADSC)

I. Reconstructive surgery						
Lumpectomy (RESTORE-2)	Transplantation of autologous ASCs to reconstruct breast deformities	Cosmetic and functional results of reconstructive surgery	Phase IV non-randomized	1 year	70	Cytori Therapeutics Inc.
Cell-assisted lipotransfer strategy	Transplantation of lipoaspirates with additional ASCs from a separate volume of lipoaspirates	Cosmetic and functional results of reconstructive breast surgery and facial remodeling	NA	NA	400	University of Tokyo
Renal failure (vesico-ureteral reflux)	Transplantation of autologous adipocytes to treat defective volume	Radiography of urethra and bladder. Presence of kidney or ureter infection	Phase III non-randomized	10 years	14	Strasbourg University Hospital
Perianal fistulas without Crohn disease (FATT-1)	Fibrin adhesive only, autologous ASCs only, or fibrin adhesive with autologous ASCs during surgery	Closure of fistulas (abnormal connection between structures)	Phase III randomized double blinded	26 weeks and 6 months	214 and 150	Cellerix Ltd
Complex perianal fistula	Fibrin adhesive only or fibrin adhesive with autologous ASCs from lipoaspirates	Closure of fistulas Recurrence of fistulas	Phase II randomized	1 year	50	Cellerix Ltd
Diabetic lower extremity & venous stasis wounds	Subcutaneous injection of lipoaspirate into wounds	Wound healing	Phase I/II randomized single blinded	1 year	250	Washington D.C. Veterans Affairs Medical Center
Depressed scar	Subcutaneous injection of autologous cultured adipocytes	Cosmetic and safety	Phase II/III interventional single group	12 weeks	36	Anterogen Co. Ltd
Condition	Delivery of ASCs	End points	Design	Follow-up	Patients	Site or company

Tran TT and Kahn CR. Nat Rev Endocrinol. 2010 Apr;6(4):195-213.

BUCK Clinical Trials With Human Adipose Tissue Derived Stem Cells (ADSCs)

Condition	Delivery of ASCs	End points	Design	Follow-up	Patients	Site or company
Survivors of leukemia or lymphoma	Transplantation of ASCs after total body irradiation versus no treatment	Abdominal MRI, blood pressure, cholesterol, presence of diabetes	Observational prospective	1 year	60	Memorial Sloan-Kettering Cancer Center
Lipodystrophy (AADSCTPL)	Transplantation of autologous lipoaspirate enriched with ASCs	Clinical evaluation of transplanted area. Tissue viability, neovascularization, degree of resorption of adipose tissue graft	Phase I interventional single group	1 year	10	Hospital Irmandade Santa Casa de Misericordia de Porto Alegre
Acute myocardial infarction and coronary artery disease (APOLLO)	Injection of autologous ASCs or placebo	Cardiac function, major adverse cardiac and cerebral events	Phase I randomized double blinded placebo	6 months	48	Cytori Therapeutics Inc.
Non-revascularizable ischemic myocardium (PRECISE-01)	Injection of autologous ASCs or placebo into left ventricle	Cardiac function, major adverse cardiac and cerebral events	Phase I randomized double blinded placebo	3 years	36	Cytori Therapeutics Inc.
II. Metabolic						

Very promising source of cells for autologous therapies with one limitation- age of patient!

Expansion and Differentiation capacity of ADSCs declines with age.

Tran TT and Kahn CR. Nat Rev Endocrinol. 2010 Apr;6(4):195-213.

Discovery-driven LS-MS Pipeline For Identification of Novel Post-translational Protein Modifications in Senescent Human ADSCs

Comparative Analysis of hADSCs

self-renewal vrs replicative senescence

4 different genotypes

36 NOVEL Histone PTMS associated with *ex-vivo* stem cell aging

Eviction of metH1.0 from Chromatin Upon Genotoxic Stress Induced Senescence of hADSCs

Are novel histone H1.0 PTMs better markers of cellular aging?

On going studies include: -IHC of the old mice, rat tissue -Biopsy samples - Analysis of progeria models

Genome-wide Mapping of DNA Damage (CHiP-Seq) in ADSC

Two genotypes

4 samples of self-renewing (SR) vrs 4 samples of senescent (SEN) ADSCs

Sequencing platform: SOLiD

Sequencing read 35bp

Depth of sequencing 120 million tags

Algorithms for assembly:

MAQ and Gibbs sampling

Aging of human adult stem cells

Lentiviral shRNA-Mediated Knockdown of Generic Alu Transcript in Senescent hADSCs

Lentiviral shRNA-Mediated Knockdown of Generic Alu Transcript in Senescent hADSCs

shAlu-ADSCs are negative for senescence-associated SAβ-gal

Persistent γH2AX foci forming capacity is abrogated in shAlu-

Lentiviral shRNA-Mediated Knockdown of Generic Alu Transcript in Senescent hADSCs

Morphology of Alu shRNA mutant ADSC in culture and their initial characterization

ALU shRNA lenti-GFP mutant cell display EB-like phenotype after 7 days in culture and are positive for Alkaline Phosphatase

Neurogenic Differentiation of shAlu mutant EB

sh-Alu expressing ADSC Immunohistochemical analysis after 2 days in neurodifferentiation media.

BUCK ejuvenation of senescent hADSCs erases developmental memory

What is Next for REjev ADSC?

Neurogenic differentiation on brain slices

Myocardial repair

Collaboration with European Stem Cell Consortia

Carlos Semino Lab

- 1. Understanding of stem cell cellular epigenetic regulations is incomplete (does not include the aging component).
- 2. Novel biomarkers for monitoring of organismal aging can be obtained through the investigation of the stem cells.
- 3. We can use genetic engineering to rejuvenate old human stem cells. This allows for enhancement of cellular therapies and understanding of the biology of cellular and organismal aging.

Regenerative Medicine: a modern days Fountain of Youth?

EARCH ON AGING

2012 Symposium: Stem Cell Research and Aging

March 1-2, 2012

Buck Institute for Research on Aging, Novato, California

TOPICS

Basic Biology of Stem Cells **Epigenetics and Stem Cells** Adult Stem Cells and Aging iPS Cells as a Model of Human Disease Clinical Application to Fight Diseases of Aging

ORGANIZERS

Lisa M. Ellerby Buck Institute for Research on Aging

Brian Kennedy Buck Institute for Research on Aging

Victoria Lunyak Buck Institute for Research on Aging

Thomas A. Rando Stanford University School of Medicine

Alan O. Trounson California Institute for Regenerative Medicine

FOR MORE INFORMATION www.thebuck.org

edgments

LUNYAK Lab	Georgia Institute of Technology:				
James Tollervey, PhD	School of Biology				
Sirkka Liisa Hostikka,	King I. Jordan Lab				
PhD	Emory University Genomic				
Benjamin Blackwell,M.S <u>Core:</u>					
Glenn Geesman M.Sc.	Tim Speed Lab				
Christina Vicente Garcia School of Medicine					
	Geoff Rosenfeld Lab				
	Department of Plastic Surgery				
Undergraduate student	^{S:} Marek Dobke , MD				
Michelle Attallah					
Garrett Peck	TEXAS MD Anderson Cancer				
Ben Lerch	Center:				
Daniel Ross Eth	Mark Bedford Lab				
	Life Technologies:				
Kennedy Lab	Biomarkers Research				
	Initiave				
	(BRIMS)TermoFisher				
	Scientific:				
Funding Sources	Elaopean Stean, Cen Consortia:				
r anding obarooo.	Carlos Eduardo Semino Lab, Ph				

Buck Institute Start-up Fund BUCK institute Geroscience Consortium pilot (NIA)